

#### FOOD CHEMISTRY

Chapter 5 : Amino acids and proteins

#### 5.1 STRUCTURE OF AMINO ACIDS

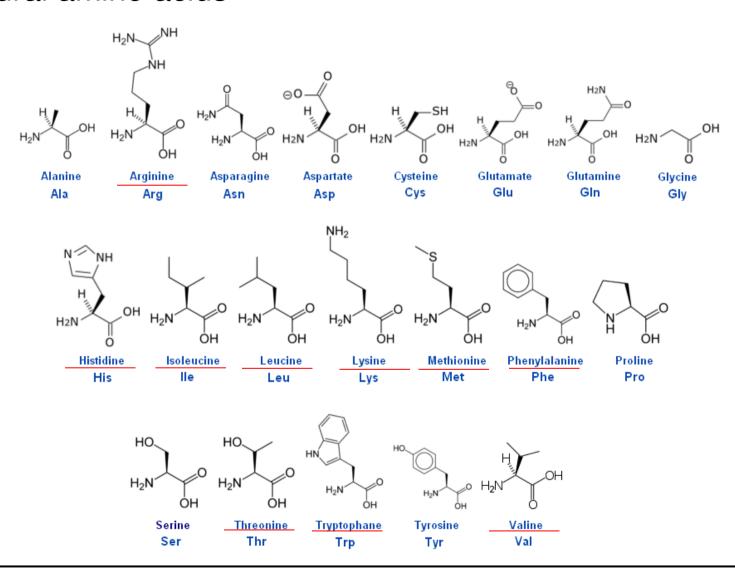
#### General formula of amino acids

$$H_2N$$
 $O$ 
 $O$ 

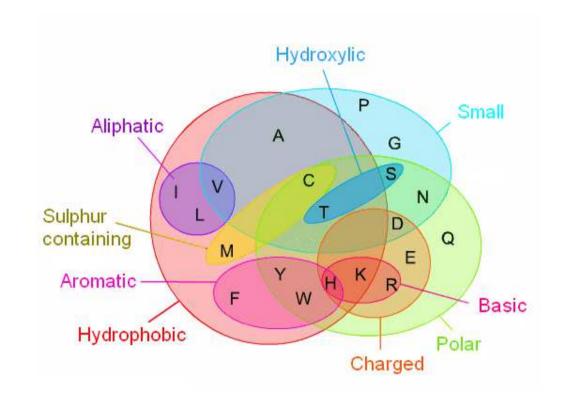
Amine in  $\alpha$ -position

$$H_3$$
 $\stackrel{+}{\mathsf{N}}$  $O$  $\mathsf{NH}_2$  $\mathsf{OH}$ 

Charged side chain *Lysine* 

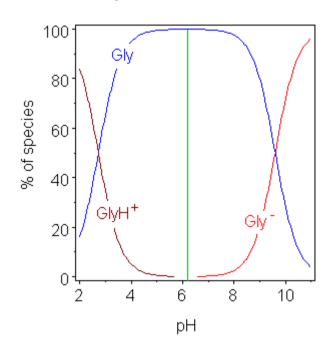

$$H_3C$$
 $OH$ 
 $OH$ 
 $OH$ 

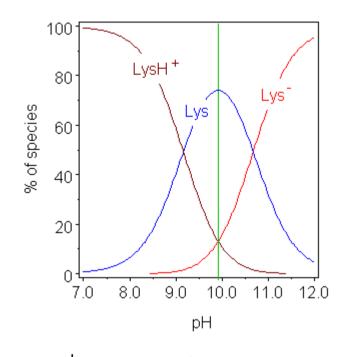
Non polar side chain *Alanine* 


Polar side chain *Serine* 

#### 5.1 STRUCTURE OF AMINO ACIDS

#### Natural amino acids





#### 5.1 STRUCTURE OF AMINO ACIDS Classification of amino acids



- A alanine
- R arginine
- N asparagine
- D aspartic acid
- C cysteine
- Q glutamine
- E glutamic acid
- G glycine
- H histidine
- I isoleucine
- L leucine
- K lysine
- M methionine
- F phenylalanine
- P proline
- S serine
- T threonine
- W tryptophan
- Y tyrosine

#### 5.2 PHYSICAL PROPERTIES OF AMINO ACIDS Isoelectric point





H<sub>3</sub>NCH<sub>2</sub>COOH H<sub>3</sub>NCH<sub>2</sub>COO pl = 6.1

H<sub>2</sub>NCH<sub>2</sub>COO

 $pK_1 = 2.72$ 

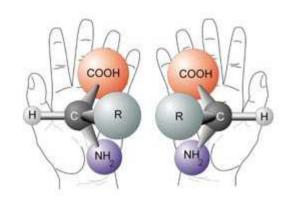
 $pK_2 = 9.60$ 

H<sub>3</sub>N(CH<sub>2</sub>)<sub>4</sub>CH(NH<sub>3</sub>)COOH

H<sub>3</sub>N(CH<sub>2</sub>)<sub>4</sub>CH(NH<sub>3</sub>)COO

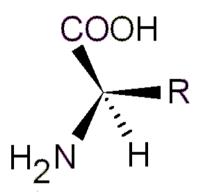
H<sub>3</sub>N<sup>†</sup>(CH<sub>2</sub>)<sub>4</sub>CH(NH<sub>2</sub>)COO-

H<sub>2</sub>N(CH<sub>2</sub>)<sub>4</sub>CH(NH<sub>2</sub>)COO <sup>-</sup>


 $pK_1 = 2.15$ 

 $pK_2 = 9.16$ 

pl = 9.7


 $pK_3 = 10.67$ 

#### 5.2 PHYSICAL PROPERTIES OF AMINO ACIDS Optical activity



The « CORN » rule:

With H atom away from the viewer, « CORN » is the D-form (the natural one is the L-form).



This has nothing to do with the rotation of the plane of polarized light.

- (+) alanine
- (-) cysteine
- (-) tyrosine
- (+) valine

# 5.3 REACTIONS OF AMINO ACIDS *Ninhydrin reaction*

Ruhemann's purple

Allows to detect minute amounts of proteins (eg fingerprints).

# 5.3 REACTIONS OF AMINO ACIDS Formation of higher alcohols

$$\xrightarrow{\text{decarboxylase}} \quad \text{R-C -H} \quad \xrightarrow{\text{alcohol-dehydrogenase}} \quad \text{R-CH-OH}$$


Isoleucine → 2-methyl-butanol

Leucine  $\rightarrow$  3-methyl-butanol

Phenylalanine → 2-phenyl-ethanol

Valine → Isobutanol

# 5.3 REACTIONS OF AMINO ACIDS Chromatogram of higher alcohols in Rhum



- A 2-Propanol
- B n-Propanol
- C n-Butanol
- D 2-Methyl-propanol
- E 3-Methyl-butanol
- F 2-Methyl-butanol
- G n-Pentanol

#### 5.3 REACTIONS OF AMINO ACIDS Decarboxylation leading to biogenic amines

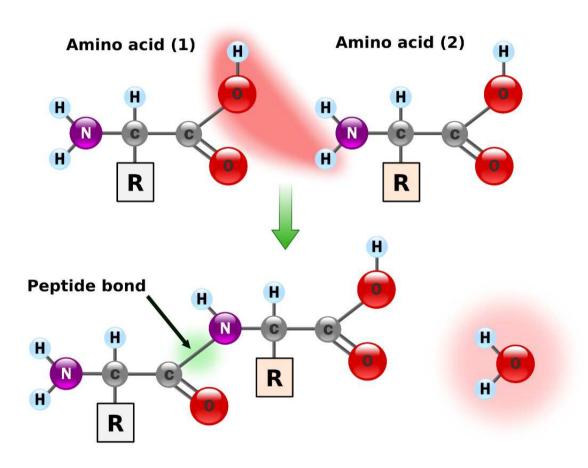
Tryptophan → Serotonin

Histidine → Histamine

 $\text{Lysine} \rightarrow \text{cadaverin}$ 

 $arginine \rightarrow putrescin$ 

Tyrosine → Tyramine


Tyrosine → Dopamine

#### 5.3 REACTIONS OF AMINO ACIDS Racemisation

$$H_3C$$
 $+ NH_3$ 
 $CH_3$ 
 $CH_3$ 

- ► Asparagine racemizes relatively quickly and has frequently been used to date materials from the present back to around 25000 BP.
- Isoleucine racemizes much more slowly, and has been used to date materials from 5000 to 2 million years of age.

# 5.4 PEPTIDES The peptide bond



#### 5.4 PEPTIDES Some definitions

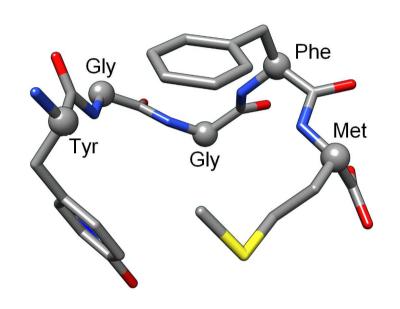
Peptides are short polymers of amino acids linked by peptide bonds.

A polypeptide is a single linear chain of amino acids.

An oligopeptide is a polypeptide less than 30-50 amino acids long.

A di-, tri- or tetrapeptide is a chain with 2, 3 or 4 amino acids.

Notation:


Carnosine

β − alanyl-L-histidine

Ala-His

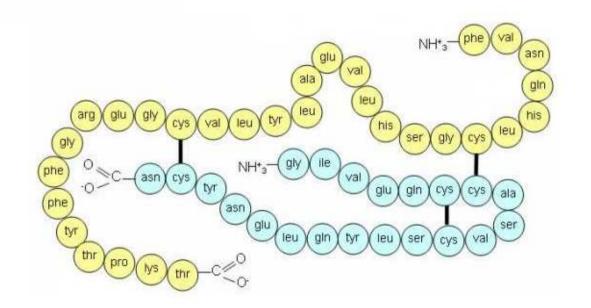
Always start with N-terminal aa!

### 5.4 PEPTIDES Opioid peptides



Met-enkephalin

Tyr-Gly-Gly-Phe-Met


Leu-enkephalin

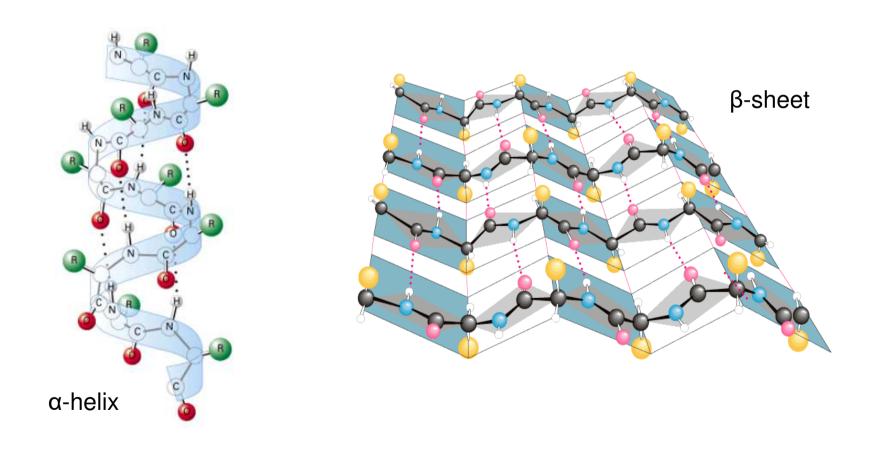
Tyr-Gly-Gly-Phe-**Leu** 

Opioid peptides are short sequences of amino acids that bind to opioid receptors in the brain. They may be produced by the body itself, for example endorphins. Brain opioid peptide systems are known to play an important role in motivation, emotion, response to pain, and the control of food intake.

# 5.5 STRUCTURE OF PROTEINS *Primary structure*

Sequence of amino acids chain, with disulfur bridges



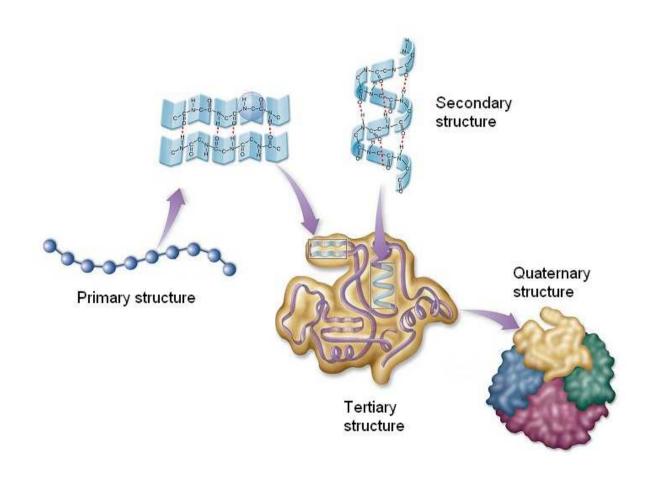

Human insulin

Chain A (21 aa)

Chain B (30 aa)

# 5.5 STRUCTURE OF PROTEINS Secondary structure

Three-dimensional form of local segments due to H-bonds




# 5.5 STRUCTURE OF PROTEINS *Tertiary structure*

Three-dimensional structure of a protein. The alphahelices and beta-sheets are folded into a compact globule. The folding is mainly driven by hydrophobic interactions and the burial of hydrophobic residues from water.



### 5.5 STRUCTURE OF PROTEINS General overview



#### 5.5 STRUCTURE OF PROTEINS

#### Texturisation of proteins

Heat is very often used in food industry to obtain a structure that provides the texture of a solid, but also to stabilize foams or emulsions. The various stages of protein processing are the following:

Denaturation Transition from an ordered to a disordered state without

breaking of covalent bonds: it is the unfolding of the protein

Polymerization Formation of large aggregates

Precipitation Formation of large aggregates with total loss of solubility

Flocculation Unordered aggregation without denaturation

Coagulation Protein-protein aggregation with denaturation

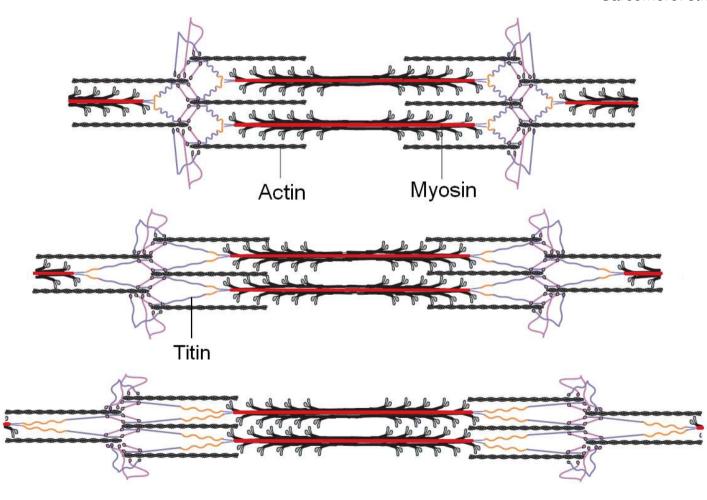
Gelification Formation of a more or less ordered three dimensional network

polymer. It is the result of the balance between cohesive and

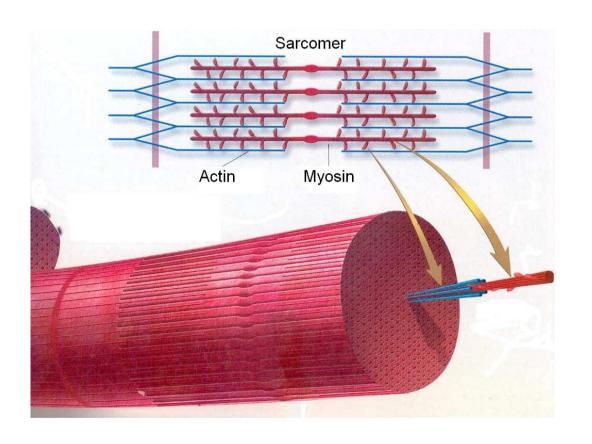
repulsive forces.

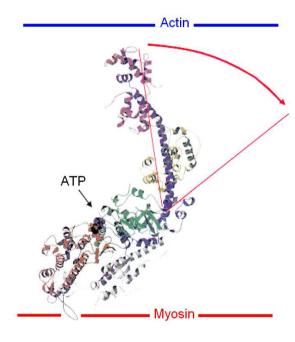
#### 5.5 STRUCTURE OF PROTEINS Texturisation through transglutaminase

Protein 1 
$$NH_2 + H_2N$$
 Protein 2  $NH_3$  Transglutaminase  $NH_3$  Protein 2

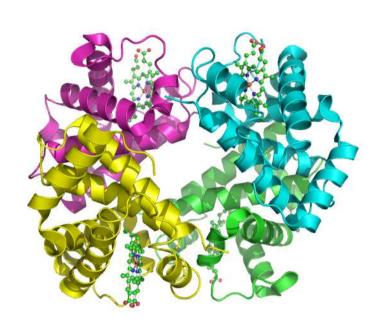

# 5.6 MEAT PROTEINS Composition of meat

| Type of meat   | Moisture | Proteins | Fat | Minerals |
|----------------|----------|----------|-----|----------|
| Pork shoulder  | 74.9     | 19.5     | 4.7 | 1.1      |
| Beef steak     | 74.6     | 22.0     | 2.2 | 1.2      |
| Chicken breast | 74.4     | 23.3     | 1.2 | 1.1      |


| Type of proteins   | Proteins   | Percentage |
|--------------------|------------|------------|
| Myofibrillar       | Myosin     | 29         |
|                    | Actin      | 13         |
|                    | Total      | 61         |
| Sarcoplastic       | Hemoglobin | 4          |
|                    | Enzymes    | 24         |
|                    | Total      | 29         |
| Connective tissues | Collagen   | 6          |
|                    | Elastin    | 1          |
|                    | Total      | 10         |


### 5.6 MEAT PROTEINS *Muscle constriction I*

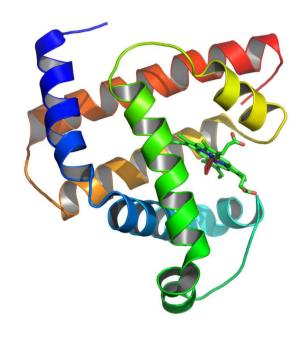
Sarcomere: striated muscle




### 5.6 MEAT PROTEINS Muscle constriction II






### 5.6 MEAT PROTEINS Structure of hemoglobin



Hemoglobin is the iron(II)-containing oxygen-transport metalloprotein in the red blood cells of all vertebrates. It has a quaternary structure with four sub-unit globular proteins.

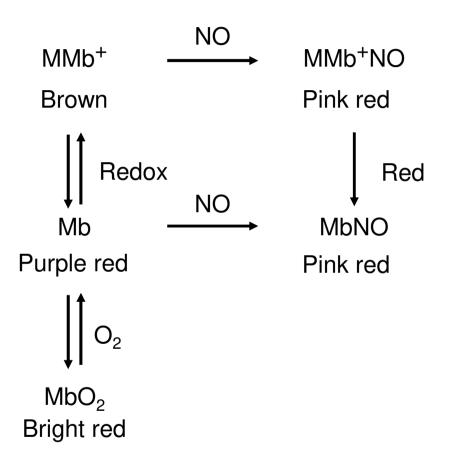
The heme group consists of an iron ion held in a porphyrin ring. Iron coordinates with the four porphyrin nitrogens and to an histidine residue of the globular protein. The sixth position can reversibly bind  $O_2$ , CO,  $CO_2$  NO or  $NO_2$  by a weak covalent bond.

# 5.6 MEAT PROTEINS Structure of myoglobin



Myoglobin is a single-chain globular protein of 153 amino acids and stores oxygen in muscle tissues. It is not found in the blood stream (except in case of muscle injuries).

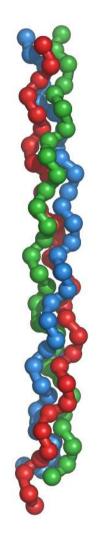
Other types of heme-proteins:


► Hemocyanin (Copper center)

Transport and storage of oxygen in marine organisms and invertebrates.

Chlorophyll (Magnesium center)

Absorption of light, first stage of photosynthesis.

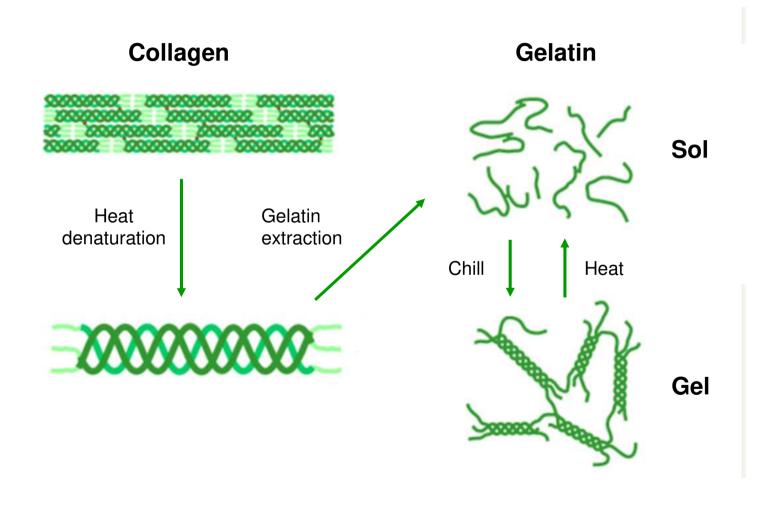

# 5.6 MEAT PROTEINS *Myoglobin and meat colours*



| Center  | Ligand           | Name                            |
|---------|------------------|---------------------------------|
| Fe(II)  | H <sub>2</sub> O | Myoglobin (Mb)                  |
|         | O <sub>2</sub>   | Oxymyoglobin                    |
|         | NO               | Nitrosomyoglobin                |
|         | CO               | Carboxymyoglobin                |
|         | CN               | Cyanmyoglobin                   |
| Fe(III) | OH-              | Metmyoglobin (MMb <sup>+)</sup> |

NO is provided by meat curing :  $NO_3^- \rightarrow NO_2^- \rightarrow NO$ 

# 5.6 MEAT PROTEINS Connective tissues and collagen




Connective tissues makes up a variety of physical structures including tendons, cartilage, bone and lymphatic tissue.

The main protein in connective tissues is collagen. The tropocollagen subunits are twisted together into a right-handed coiled coil, a cooperative quaternary structure.

Connective tissues are the only ones that contain hydroxyproline. This analysis is used to quantify the amount of connective tissues in meat products.

# 5.6 MEAT PROTEINS Collagen and gelatin formation



#### 5.6 MEAT PROTEINS Production of surimi

Fish meat is ground in a mechanical separator that eliminates skin and bones. The pulp obtained is washed with sodium bicarbonate 0.5%, water and finally with saline. These washes are designed to eliminate low molecular weight and sarcoplasmic proteins, and supernatant fat brown muscle.

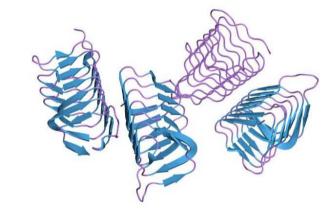
The remaining mass consisting mainly of actomyosin is pressed and supplemented with cryoprotectants such as sorbitol. It is called surimi.

Gelation sets up a protein network that is carried out in two stages, first denaturation followed by aggregation. Aggregation must be done very slowly so that proteins can associate and be properly oriented. The gel formed is then stabilized by steaming and is called kamaboko.

Cooking can also be done on thin films to be rolled into a cylinder to give artificial crab sticks.





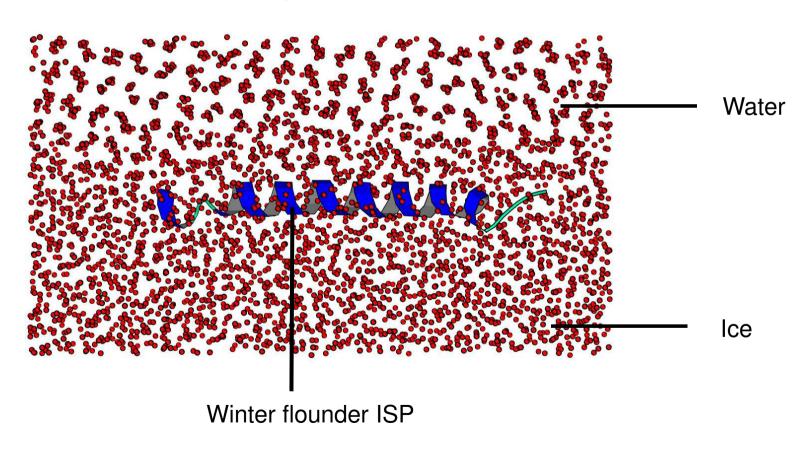

#### 5.6 MEAT PROTEINS

#### Effects of ice structuring proteins (ISP)

Or Antifreeze proteins

- → ISPs are naturally occurring proteins that bind to ice and are found mainly in fish, but also in vegetables, lichens, and bacteria
- → The freezing point-depression activity of ISP is a non-colligative mechanism, thereby minimizing the effect on the osmotic pressure of cells

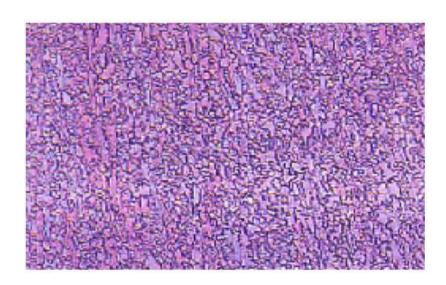





Spruce budworm ISP (polypeptides)

→ Ice structuring proteins exert their effect by binding directly to the growing ice crystal and thereby modifying its size and morphology

# 5.6 MEAT PROTEINS Action of ice structuring proteins

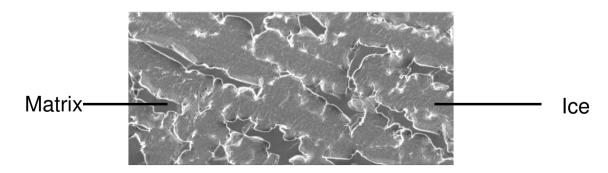

#### Molecular dynamics simulation



# 5.6 MEAT PROTEINS Effects of ice structuring proteins

30% sucrose without ISP

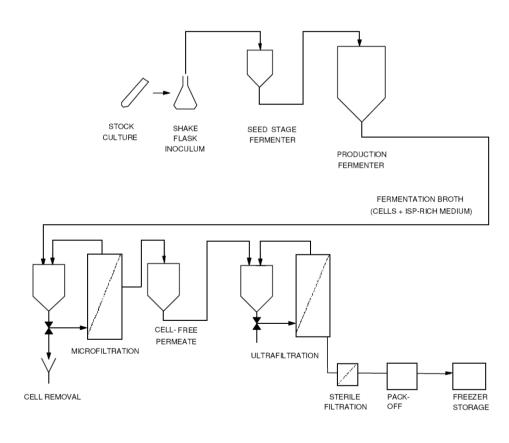
30% sucrose with ISP




## 5.6 MEAT PROTEINS Use of ice structuring proteins in ice cream production

Ice cream is a complex, frozen, aerated emulsion, made up of four phases: air, ice, fat, and matrix (matrix is the unfrozen part containing sugar, protein, stabilisers, flavours, and emulsifiers)

ISP ice creams are softer and mellower. They provide new texture and creaminess


#### Ice structure with ISP

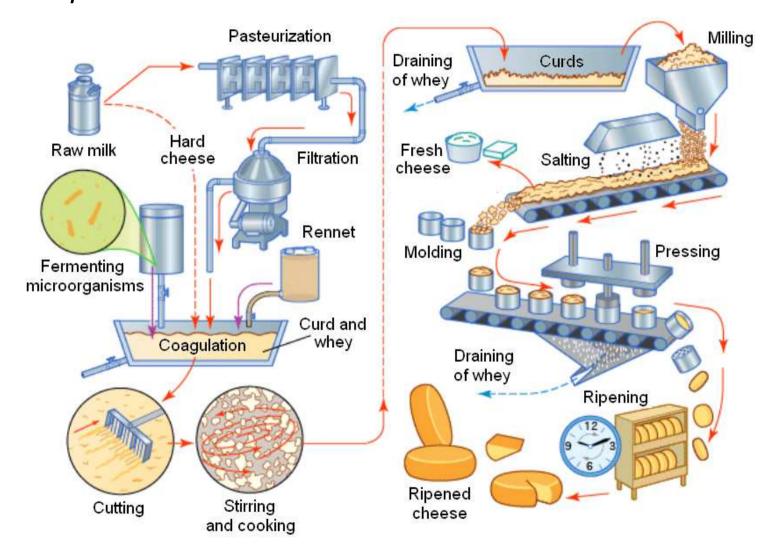


# 5.6 MEAT PROTEINS Industrial ISP production (Unilever)

Fermentation system using a genetically modified baker's yeast ( Saccharomyces cerevisiae ) carrying a synthetic gene encoding for the ISP Type III HPLC 12 from ocean pout ( Macrozoarces americanus )






#### 5.7 MILK PROTEINS Proteins of bovine milk

| Proteins        | Percentage | Molecular weight (kD) |
|-----------------|------------|-----------------------|
| α-Casein        | 42         | 23.6 - 25.2           |
| β-Casein        | 25         | 24.0                  |
| γ-Casein        | 4          | 11.6 - 20.5           |
| κ-Casein        | 9          | 19.0                  |
| β-Lactoglobulin | 9          | 18.3                  |
| α-Lactalbumin   | 4          | 14.2                  |
| Immunoglobulins | 2          | 162 - 950             |

Caseins 80% (insoluble in acid media)

Whey proteins 20% (soluble)

# 5.7 MILK PROTEINS Cheese production



### 5.7 MILK PROTEINS Swiss cheese fondue

Cheese, consist mainly of insoluble calcium paracaseinate and fat globules. By chelating the calcium from the protein structure, the emulsifying salts contributes to enhance their emulsifying properties.

Calcium caseinate (insoluble)

- H+  
+ Calcium ligands  

$$\Delta$$

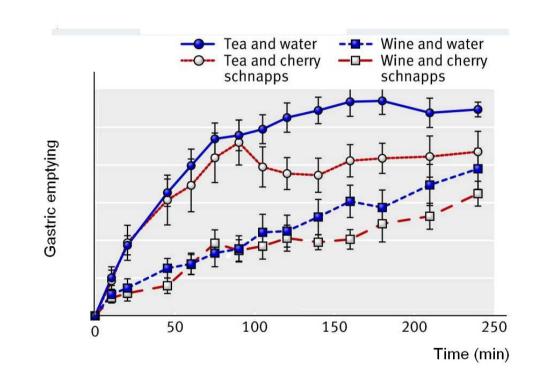
Monomers (soluble caseins)

Ca ligands: sodium citrate (lemon juice)

sodium tartrate (acidic wine)

pH adjustment : NaHCO<sub>3</sub>




In aged cheese, caseins are partially degraded and present better emulsifying properties

Starch addition contributes to thicken the water phase, and prevents the coalescence of fat globules

### 5.7 MILK PROTEINS What can we drink with a swiss cheese fondue?

Cheese fondue (3260 kJ) labelled with 150 mg C<sup>13</sup>-Na octanoate was consumed with 300 ml of white wine (13%) or black tea in randomised order, followed by 20 ml kirsch (40%) or water in randomised order.

20 healthy volunteers



H. Heinrich & al., British Med. J., 341, c6731 (2010)

## 5.8 CEREALS PROTEINS Separation of grain proteins

Osborne (1907): 4 fractions based on sequential solubility

- 1. Water → Albumins
- 2. NaCl 0.4 mol/l → Globulins
- 3. EtOH 70%  $\rightarrow$  Prolamins
- 4. Residue → Glutelins

| Fractions | Wheat    | Rye       | Oats     | Barley   | Corn   | Rice     |
|-----------|----------|-----------|----------|----------|--------|----------|
| Albumins  | Leukosin |           |          |          |        |          |
| Globulins | Edestin  |           | Avenalin |          |        |          |
| Prolamins | Gliadin  | Secalin   | Avenin   | Hordein  | Zein   | Oryzin   |
| Glutelins | Glutenin | Secalinin |          | Hordenin | Zeanin | Oryzenin |

#### 5.8 CEREALS PROTEINS Bread production

Mixing Homogeneization of ingredients

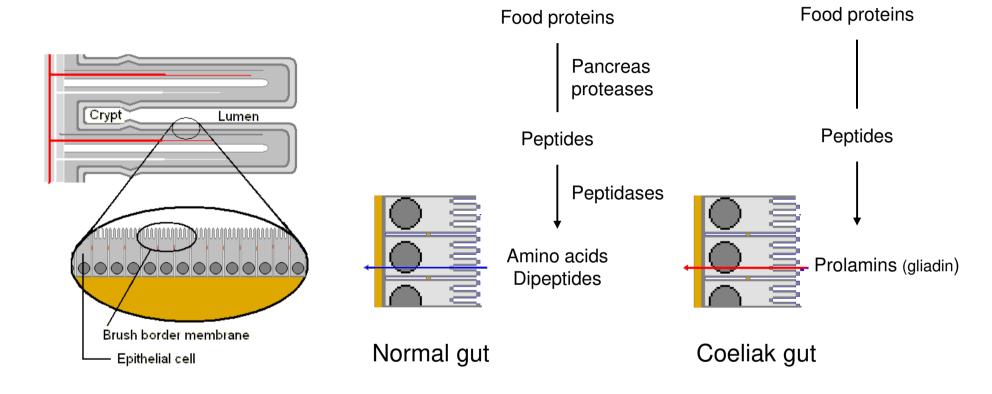
Kneading Degradation of starch through  $\alpha$ -amylase

Crosslinking of glutenin (backbone) and gliadin (viscosity)

Formation of -s-s- bonds between gluten proteins

Fermentation Production of CO<sub>2</sub> and EtOH through alcoholic fermentation

Formation of a foamy structure


(CO<sub>2</sub> bubbles embedded in gluten membranes)

Baking Formation of a sponge-like structure (expansion of CO<sub>2</sub> bubbles)

Solidification of the membranes (proteins denaturation)

Formation of aroma compounds (Maillard reactions)

### 5.8 CEREALS PROTEINS Coeliak disease



Normal intestine

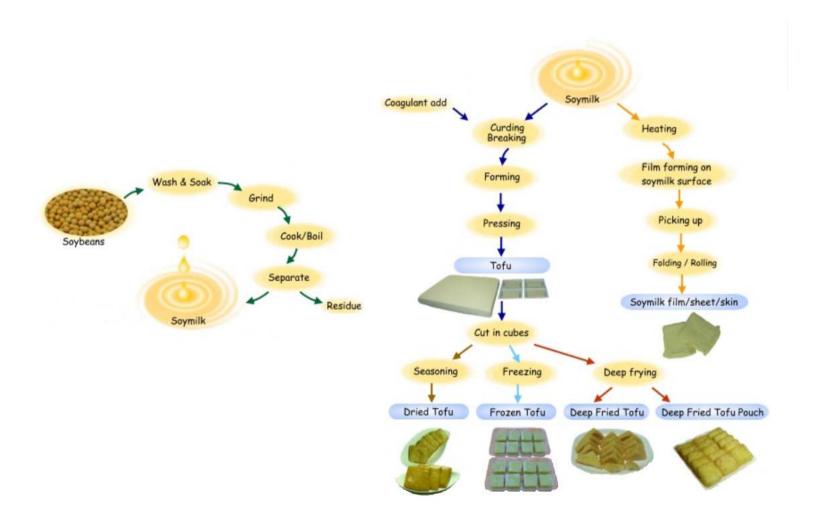
Prolamins (glutamine&proline) cause membrane leaking, allowing peptides to enter the cells, causing inflammations and cell disruption. (truncating of the villi)

### 5.9 SOYBEAN PROTEINS Soybean products

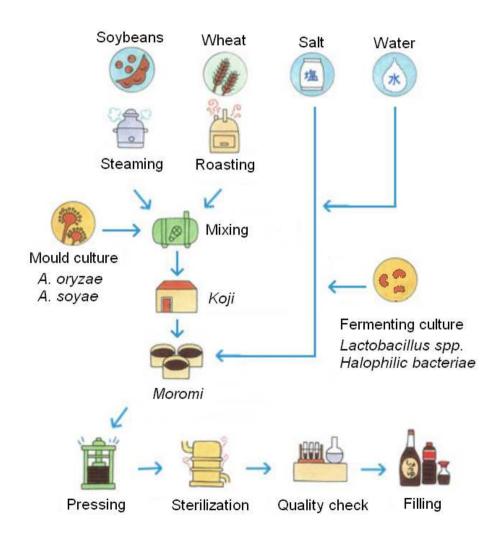
Soybean is one of the legumes with the highest protein contents (40%)

It contains two Osborne fractions, albumins (10%) and globulins (90%)

The globulin fraction is mainly formed of Vicilin, Glycinin and Conglycinin


Soy milk Stable emulsion produced by grinding soaked soybeans with water

Tofu Coagulated soy milk, pressed into soft white blocks


Soy sauce Condiment produced by fermenting soybeans with water and salt

Miso Japanese seasoning produced by fermenting soymeal

## 5.9 SOYBEAN PROTEINS Soymilk and tofu production



## 5.9 SOYBEAN PROTEINS Soy sauce production



#### 5.10 NUTRITIONAL ASPECTS Essential amino acids

| Amino acids              | RDA (mg per kg BW) |
|--------------------------|--------------------|
| Isoleucine               | 20                 |
| Leucine                  | 40                 |
| Lysine                   | 30                 |
| Methionine + Cysteine    | 15 (total)         |
| Phenylalanine + Tyrosine | 25 (total)         |
| Threonine                | 15                 |
| Tryptophan               | 5                  |
| Valine                   | 25                 |

**Recommended Dietary Allowance** 

#### 5.10 NUTRITIONAL ASPECTS

#### Measures of proteins nutritional quality

Biological value (BV)

Measure of the proportion of absorbed protein which becomes incorporated into the proteins of the body.

$$BV = (N_r / N_a) * 100$$

 $N_a$  = nitrogen absorbed in proteins on the test diet

 $N_r$  = nitrogen incorporated into the body on the test diet

Protein efficiency ratio (PER)

Weight gain of a test subject divided by its intake of a particular food.

PER = Gain in body mass / Protein intake

## 5.10 NUTRITIONAL ASPECTS Protein Digestibility Corrected Amino Acid Score

Evaluation of the protein quality based on both the amino acid requirements of humans and their ability to digest it.

Adopted by the US Food and Drug Administration (FDA) and the Food and Agricultural Organization of the United Nations/World Health Organization (FAO/WHO) in 1993 as the preferred best method to determine protein quality.

# 5.10 NUTRITIONAL ASPECTS Comparison of protein quality measures

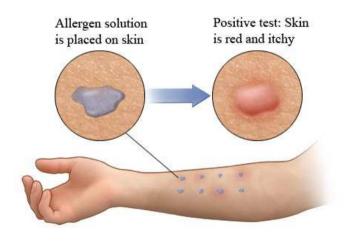
| Food        | BV | PER | PDCAAS | Limiting aa |
|-------------|----|-----|--------|-------------|
| Chicken egg | 94 | 3.9 | 1.00   |             |
| Cow's milk  | 91 | 3.1 | 1.00   | Met         |
| Fish        | 76 | 3.5 | 0.95   | Thr         |
| Beef        | 74 | 2.3 | 0.92   | Met         |
| Soybeans    | 73 | 2.3 | 0.91   | Met         |
| Rice        | 86 | 2.2 | 0.59   | Lys, Tyr    |
| Wheat       | 54 | 1.5 | 0.42   | Lys, Thr    |

### 5.10 NUTRITIONAL ASPECTS Tryptophan and post-Thanksgiving dinner drowsiness

Tryptophan can be metabolized into serotonin and melatonin, neurotransmitters that exert a calming effect and regulates sleep



High tryptophan contents of turkey has been cited as the cause of « post-Thanksgiving dinner drowziness »


- Turkey: 0.33 % Trp Chicken: 0.28 % Trp (no sleep-inducing effect)
- Carbohydrate rich meal induces insulin production, which in turn enhances Trp concentration in the brain, thus producing more serotonin
- Fat rich meal take a lot of energy to digest, so blood will be redirected to the digestive system, meaning less bloodflow and less energy elsewhere
- Drinking alcohol (a central nervous system depressant) during the meal will add to the nap-factor

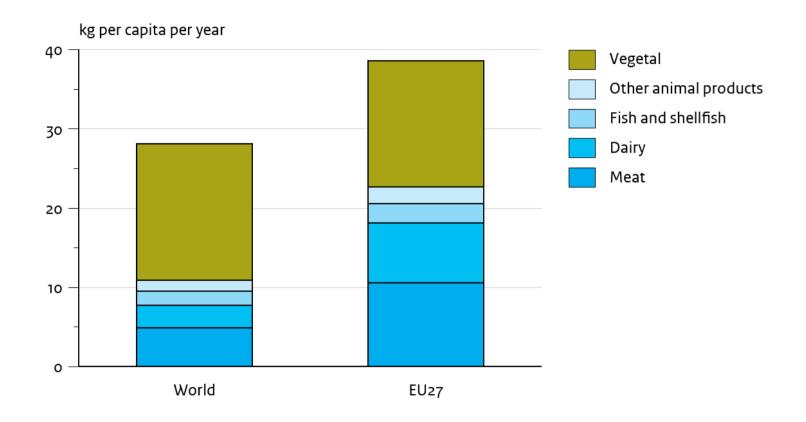


## 5.10 NUTRITIONAL ASPECTS Food allergies due to proteins

| Immunological intolerances |                                             | Estimated frequencies         |  |  |
|----------------------------|---------------------------------------------|-------------------------------|--|--|
| Coeliac disease            |                                             | 1 %                           |  |  |
| Food allergies             | Adults<br>Children up to 17 years<br>Babies | 2 - 4 %<br>3 - 4 %<br>2 - 6 % |  |  |

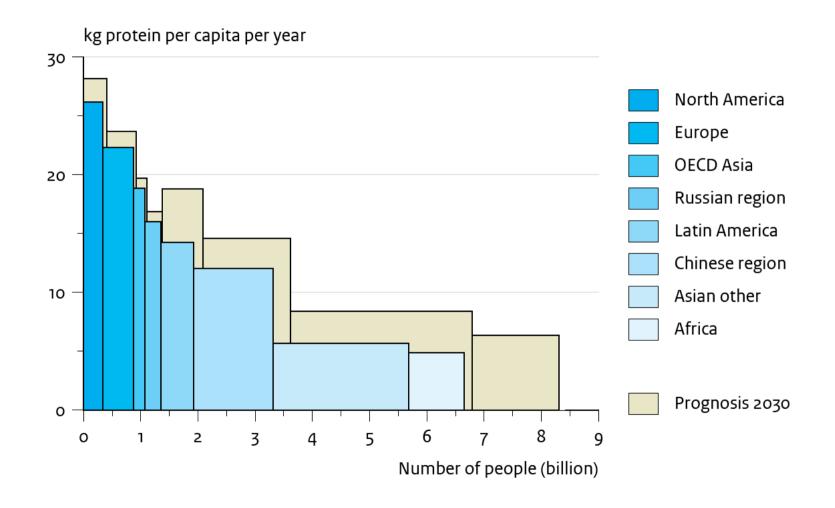
| Pollen     | Food reponsible of cross-reactions                                                                                                |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Birch      | Apricots, almonds, peanuts, carrots, celery, cherries, kiwis, nectarines, hazelnuts, peaches, pears, apples, potatoes, plums, soy |
| Grass      | Peanuts, chard ribs, melons, oranges, potatoes, tomatoes                                                                          |
| Mugwort    | Bananas, cucumbers, zucchini, melons                                                                                              |
| Plane tree | Peanuts, green beans, kiwi, lettuce, corn, melons, nuts, peaches, chickpeas, apples                                               |



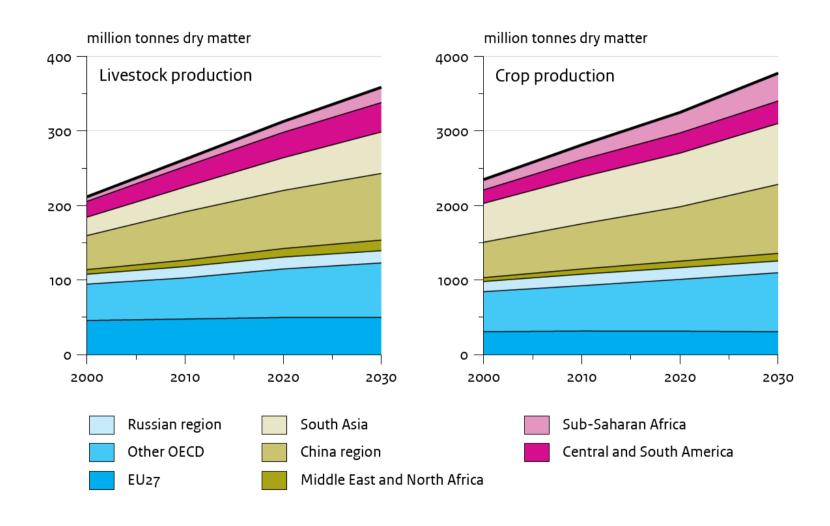

### 5.11 WORLD CONSUMPTION OF PROTEINS Environmental effects of meat and vegetable proteins

| Environmental impact | Arbitrary effect of proteins from food based on soybean | Relative effect of proteins from food based on meat and dairy |
|----------------------|---------------------------------------------------------|---------------------------------------------------------------|
| Land use             | 1                                                       | 6 - 17                                                        |
| Water                | 1                                                       | 4 - 26                                                        |
| Fossil fuel          | 1                                                       | 6 - 20                                                        |
| Fertilizers          | 1                                                       | 7                                                             |
| Pesticides           | 1                                                       | 6                                                             |

# 5.11 WORLD CONSUMPTION OF PROTEINS *Proteins productivity*


|                              | Soybean | Rice | Milk | Wheat | Eggs | Maize | Beef |
|------------------------------|---------|------|------|-------|------|-------|------|
| Edible proteins (g/m²)       | 40      | 29   | 9.2  | 15.0  | 8.5  | 24.0  | 2.2  |
| Usable<br>proteins<br>(g/m²) | 29      | 25   | 8.4  | 8.1   | 8.0  | 7.7   | 1.7  |

## 5.11 WORLD CONSUMPTION OF PROTEINS *Protein supply (FAO, 2007)*




Livestock production uses around 80% of global agricultural land!

## 5.11 WORLD CONSUMPTION OF PROTEINS Global intake of animal proteins (FAO, 2007)



### 5.11 WORLD CONSUMPTION OF PROTEINS Global protein production

